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Abstract:

A system consisting of an ideal bandpass liniter-discriminator
followed by a non~linear feedback filter has been analyzed and found to
bé equivalent to a bandpass limiter followed by & phasew-lock loop for a
class of phase detector non-linearities. This is done for the cases of

sine, tanlock end sawtooth nonlinearities.




Glossary

- BPL Bandpass Limiter

IF Internediate Fréquency Amplifier
PLL Phase Iocked Loop

DIsC Discriminator

VCo Voltage Controlled Oscillator



Introduction

-Consider the systems shown in Fig. 1 and Fig. 2. ILet each system have

the same IF output signal.

e = n(t) + o sin [wgt + m(t)) 1)

where n(t) is & vhite band limited Gaussian noise, a is the carrier amp-
litude, w, is the carrier frequency and ﬁ(t) is the frequency modulation.
Ir the’modulation bandwidth is much less than the BPL bandwidth the noise
can be expanded in terms of in phase and quadrature phase componénts with

respect to the signal phase. That is

i

n(t) = ny(t) cos luct + m(t)] + n,(t) sin [ugt + m(t)] (2)
Letting )

AE) = [n2(t) + (@ + n,y(6)12 (3)
and 1

y(8) = tan™ [ny(6) / (n,(6) + )] + m(t) )
and substituting in.(l), then

erp = A(t) sin [ugt + y(t)] (5)

McRae, Pelchat and Smith of Radiation Inc.5 have proposed that the
system shown in Fig. 1 is equivalent to the phase lock loop (PLL) when the
system parameter g, the integrator gain, is wnity. Fig. 2A is a PLL with
preceding bandpass limiter (BPL). Fig. 2B is a PLL without BPL. They
believe that the presence or lack of a BPL does not change the essential

performance of a PLL,



However is Fig. 1 equivalent to Fig. 2A and Fig. 2B? More speci-
fically, do the three systems have the same noise performance? It is easy
to show that the three systems are equivalent for the high signal to noise
ratio case, but it is not obvious whether they are for the general signal
to noise ratio case.

The discussion that follows will answer these specific questions

related to the above problem.
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II. Analytical Techniques

Traditionally the noise performance of angle demodulators has been
determined theoretically by obtaining an expression for the phase error
variance. At first it was thought that this approach would be used to
compare the noise performance of Figs. 1, 2A and 2B. The following an-
slytical tools were considered:

1. Boonton's techniQue

2. Linear spectral approximation

3f Linear approximation

hf Voltera expansion

é. Pertibation expansion

é. Fokker Planck

Boonton's technique which was first applied to the analysis of PLL
by Develet2 requires that the noise at the input of the non-linear de=-
vice be additive Gaussian. However theldiscriminator output noise is only
Gaussian for high signel to noise ratios (S/N) and contains impulse noise
at low S/N. Therefore the Gaussian requirement of the Boonton technique
is violated in the region of interest.

The linear spectral approximation was used by'Tausworthe.lo This
technique requires that the noise be additive. The noise &t the output
of the BPL is not additive since it is present only as phase jitter of
the BPL output. (See pp. 8-9).

The linear approximation was rejected because under it McRae's system
reduces to a discriminator followed by & linesr filter which is known to
- have a higher threshold than the PLL. The linear model of the PLL shows

no threshold, but the real PLL does have a threshold.



The Voltera expansion technique was used by Van Trees12 to determine
the threshold of a PLL., However, the technique is very involved and he
states that it is even more difficult to apply to systems with non-Gaussian
signals.

The perbtibation expansion used by Margolisu requires that the noise
be additive.

The Fokker Planck technique has been used by Viterbil3. It requires
that the noise at the input be additive Gaussian. Furthermore, exact
results are only tractable for the first order loop.

Consider Fige l. The noise at the discriminator output is in general
not Gaussian. For low S/N it contains impulses and is only approximately
Gaussian at moderate S/N.

Consider Fig. 2A. The noise at the BPL output is not Gaussian.
Furthermore it is not additive (See p. (12 );‘. The noise here appears as
& phase Jitter on a sine wave which has & constant envelope amplitude.

(See pp.(8;9) " for discussion of the BPL characteristics).

Since all of the above analysis techniques are either invalid or
not tractable for calculating the phase-error variance, this approach was
discarded in favor 6f e more direct spproach.

Rather than compare the thresholds of systems obtained by analyzing
their mathematical models, the models themselves will be analyzed aﬁd oyt
pared. It is reasoned that if the models are valid for all S/N and if the
models are equivalent, then the systems will be equivalent for all S/N, and
thus, they will have the same noise performance and threshold. That is,
if the systems obey the same set of mathematical equations or equivalent sets
of equations and have equivalent initial conditions, they will have the same
responses to identical inputs. Therefore, they will have the same noise per-

formance and threshold.



IT1I, Model of McRae's System

The first step in this comparison is to obtain mathematical expressions
describing McRae's system. This is done by obtaining or assuming expres-
sions for each block in Fig, 1. Then this set of equations is manipulated
to put it in the form of the equations obtained from Fig. 2A. The ex-
istence of this transformation is proof of equality of the systems.

The following assumptions are msde concerning Fige. 1, 2A and 2B as
well as for all subsequent diagrams.

1., The IF amplifiers in all diagrams have equal, ideal rectangular
bandpasses with bandwidth B

and center frequency w, such that B, < < w,.

Ir Ir

3; The BPL in all diagrams has an ideal zero hysteresis limiter which

has an output a for ey > 0

&0 = 0 for ey =0 (6)
-g for g3 < 0 '

vhere €3 is the limiter input and a is the limiter amplitude constant.
This is followed by an ideal bandpass filter with the same bandpass as the
IF amplifier in 1 above.

3. The VCO in all diagrams is assumed to generate the output function,
t . '
eyco = 2 cos {g [wot + Io eo (u) du  + el]} ‘ (7

vhere 90 is the input, 6, is the initial phase end @, is the "center

1

frequency, "
4, The discriminator in all diagrams is assumed to be ideal, That

is, each is assumed to provide the output function

e = g5 st L g edi(t)]} "~ Y% 8)



in wvhich it is assumed that sin“l is multivalued., For

_ ha
eqs = 3 sin (wot + Qi)
th . . . . }/( \ ."'l.
e discriminator output is Dy Note that because sin ~ is assumed to be
tivalued, Qi is not calculated modulo 2ir.

Se If By << wy and the bandvwidth of H(S), the loop filter is

BL < < @, and h(t) = L-l H(S) where L"l denotes inverse laplace transform,

then

{sin (g (8 - 61} * n(t) = {2 cos [elugt + 0,)] + sinlelugt + £;)1}  (10)

* h(t)
where * denotes convolution,
The proof of this follows:
Note that
2 cos [g(wot + 90)] . sin [g(wdt + ﬂi)= sin {g(ﬁi - 90)] + (11)

+ sin [g(Zwo’b + g+ 90)]

Since convolution is & linear operation, superposition epplies and

(c + D) * h(t) = C * h(t) + D * n(t) (12)

Since H(S) is & low~pass filter and its bandwidth B, < < w, in most PLL then

4

|sinlg(2 w bt + @; + 0.)] * h| < < |sinlg(F; - 6 )] * bl (13)

and the former can be neglected. Q«E.D.

6. All of the assumptions 1-5 are valid for ell S/N ratios.

IV. Noise Performance and Threshold Behaviour for g = 1

Consider McRae's System in Fig. 1 for the case of g = l.5 The non-

linear filter following the discriminator is described by the function
S A M y )
{sin [f% (3, - 6,) at + 4, - 01} * Bt) = o | ()

with g, = ﬁi(O) and 6, = 90(0). This can be written

{sin (¢, - eo)} * n(t) = éo _ (15)



Now if BIF < < o and BL < < W, assumption 5 can be applied and

{sin(wot + )« cos (ut + 90)} * h(t) = éo

for all S/N. Substituting

=J"°é(x)<n+el,
Th
én2{31n(m t+ﬁ ) * cos (w t Jt (\) ar+6 )} *n(t) &

Using assumption 3 for the case g =1

A {51n(w t+¢ )
for ell /M.

* h(t) =0

VCQ} o

Consider the IF emplifier and BPL in Fig. 1. It has been shc:wnllL

that the output of the BPL in Fig. 1 under assumptions 1 end 2 is

€pp1= 2o ¢ C(0, 1)vsin [wot + y(t)]

where

c0, 1) = [r@) - r@N =2
if the input is

?IF‘= A(t)esin (ot + y(t)l.

The BPL output for this input is

_ha
e = +sin [wot + y(t)]

BPL

therefore

g, (t) = y(t)

One can ask if eppp, €N be expanded in terms of a pure signal comp-

(16)

(17)

(18)

(29)

(20)

(21)

(22)

(23)

(24)

onent plus additive noise with some pdf. To determine this y(t) is split

into signal end noise components

() = n(t) + tan™ [n,(8) /(ny(5) +a)]

and from this 5P, is expanded frigonometrically
t )+ (t)
ha n, (t)4¢ ! }
+ S
eBPL = sin [w t + m(t)] —~?%7—* cos [wot + m(t)]

(25)

(26)



or

e = ;—}%ﬂ {n(t) + o sin (o5 + ()]} " (27)

Because A-;(t) is common to both of the terms in the curly brackets it's
impossible to split € 5Pl into separate signal and noise components. The
conclusion is that the noise at the output of a BPL is not additive.

_ The discriminator by assumption 4 will operate on the BPL oﬁtput to
produce an output ;(t).

The result of these manipulations is the following set of equations.

éo = {eBPL(t) * eyeolt) EE} *n(e) (28)
where

eppr = 22 sin (ut + y(t)) | (29)
and eyeo = 2 cos [wot + IZ éo(x) a + 91] (30)

for the input
A(t) sin [0t + y(b)] - (31)
However, (28) is recognized as the equation describing the operation
of a PLL with VCO described by (30) when supplieé with an input signal eg. .
Also (29) is recognized as the output of & BPL with input (31). Since this
is exactly the system in Fig. 24, end the application of the equations is
-valid for all S/N, it is concluded that Fig. 1 snd Fig. 2A are equivalent

and hence have the same noise performance and threshold behaviour under

the stated assumptions.

V. Comparison of PLL with and Without BPL

The performances of Fig. 2A and Fig. 2B now are compared. The inclusion
of. the BPL in Pig., 2B will alter the signal level entering the loop from that
existing in Fig., 2A, since the BPL produces a constant total power outbut.

The signal level at tﬁe BPL output is & function of the S/N &t its input.



Since the bandwidth BL and deamping factor, £, of the loop depend on the

input signal level and not the noise level, Bz and £ will vary with £he

BPL input §/N of Fig. 2A, and only with the signal in Fig. 2B, Therefore,

in general, the threshold and noise performance of the two will be different.
A more meaningful comparison requires that a , the BPL gain, be con-

trolled so that the multiplier input signal component of each PLL has the

same amplitude. It may be possible under this condition ﬁo compare the

loops by caelculating and comparing their phase error variances. However,

this would be a very difficult problem because of the non-Gaussian noise at

the BPL output,

Raad

M?Rae and others have claimed that experimentel evidence shows
there &s no difference in the threshold level of Fig. 2A and Fig. 2B.
However, Gilchriest3 and Schilling8 conclude that the PLL with BPL has a
higher threshold level than the PLL without BPL.

There ere intuitive arguments for both positions., For the latter
position one can argue that since the BPL has & threshold which occurs near
the point thet its input S/N = 0 db., if Brp
the BPL will occur at & higher S/N than that of the PLL, and hence will

> > BL’ then the threshold of

dominate and cause the total system to have a higher threshold than the
PLL alone. Foi the former position one can argue that the BPL removes only
the in-phase component of the noise and since the PLL is a phase demoduletor,
the absence of this noise term should not increase its threshold. Of course
the arguments are intuitive, therefore the question remains open as to whether
Fig. 1 has the same threshold as Fig. 2B, VWith a great deal more effort

12

it may be possible to answer this question using the Voltera expansion = to

determine the phase error variance of the PLL with BPL.
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VI, McRae's System with a Sawtooth Non-linearity

The sawtooth non-linearify will now be considered. This choice is
motivated by the existence of PLL's with sawbooth characteristic phase
detectors. This type of PLL or so called "lin-lock" loop has been in-
vestigated by Byrnel and Splitt9.

First the sinusoidal non-linearity of Fig. 1 is replaced by the sawtooth
function

fl@a') =a' va's-x<at < x

(32)
fla'+2x) = £(@') V a on real line

Then a?;attempt is made to manipulate the system equations into a form that
makes %hem comparable with those of a PLL with an appropriate phase detector
characferistic.

If the gain g, of the integrator is removed from the integrator block
and included in the loop non~linearity block, & new equivalent function for

the'non~linearity can be defined by replacing &' by g o. Thus

fla) =ga VYas-n<ga<x

(33)
fla+2n/g) = £(@) V o on real line.
This new function has & period of 2x/g.
Since integration is a linear operation
‘rte(ﬁ-é')dt+ﬁ-6=‘ftf.25dt+ﬁ +J‘te at + 6 (34)
oVl o 1 1 o 1 o o 1
If g- = n is restricted to real integer values, the result is the block
diagrem in Fig. 3. )
. . -8
A(t) Slnf}wot+gl) fi ¢i "‘ f(gi
o—s=f IF BPL |———=+DISC > 1/s
“1
7
La ., ,
— 81n(ubt + gi)
. . \ - ' 4
Sawbtooth Function with Period 2nn 1/s d=—1H(8)
| 6
o

Fig. 3. Modified McRae System With Sawtooth Function
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VII. Comparison of the Modified McRee System with the PLL

If the bandwidths B < < w_/n and B

Ir H

the adder, and the non-linearity can be approximated asymptotically for

<< wO/n the two integrators,

large wo/BIF by & pulse generating VCO, VCOK, called a A function generator,

a sawbooth generating VCO, VCOS, and a sample and hold circuit as shown in

Fig. 4. The mathematical Jjustification for this follows.

A(t) sin (ot + &) éfi | AsTv (%(wot+¢i))]
. )/ { )/ ,»:/f(gi = %)
—m IF > BPL nj;T——ﬁn DISC A VCC& 1 3&H

ha . \
;T'Sln(wot+ﬁi)

'/’7

’ e
! vV = +
j co'S f((pot eo)

VCO,, mE——H(S)

[42]
(D-@
O\>_

Fig. 4. Proposed Equipment System to Fig. 3

If the input %o the VCO is @(t), the output is defined as

eyo = A [sin & (ugt +y (£)))] (35)
where )\ is defined sas

l Vt371T=0andT>0
~0 othervise

A(t) = (36)

Therefore a A pulse is generated each time the sine function has a positive-
going zero crossing.
The sample and hold circuit, S and H,is described by its input/output

relationship

e (t) =e (tj) Vst <t <ty

VLOS

where J goes over all real integers and tj are the times for which A = 1.
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The VCOS is described by its input/output relationship,

t e
®veo, flot + [ 6, W) ax+e,17 >0 (37)

This function can be realized physically quite easily by using

& unijunction relaxation oscillator in which the capacitor charging cur-

rent is controlled so that it is proportional to 0, * éo and for which

the center frequency is wo/n when the input is éo(t).
Under these conditions the output of the sample and hold circuit is

flg éo (tj)] A t3t; <t <ty +1and Vi real integer. (38)

Since;the tj are the times when sin [%(wot + ﬁi)] has positive zero crossing,
f[wo tj + ﬁi(tj)] (Modulo 2nx) = O ¥j real integer.

If By < < wy/n then| [6,(t5) = 0, (b5, )] < < w (650, )/n

and for any m

O(t

eo(tj) -6 j+m)} =0
wo(tj‘- tj+m)

lim [

(39)
nBH/wb -0

because the correlation time of the loop filter is long compared to

n/w . Similerly if By < < w/n then | [g, (¢ &) - ¢i(tj+m)|< < wo(t 7t +m)/n

and for any m

nBrp/ug = 0" g (b, = b4, 0) !

because the correlation time of the IF amplifier is long compared to n/wo.

Therefore the sampling of ey will occur at times that are asymptotically

co

P and eVCO

constant period . asym§totically for large wo/n B

periodic for large wo/n B will spproach & sawtoolh wave with

ﬂl.
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Under these conditions the output of the S and H is asymptotically
constant and equal to

£10(t) - 6, (5)] (1)
since

gy(ty) = 0,(t5) =g, (8) -0 (8) = g (b5, ) -6, (t

Jim o' Jjim

) (12)

v ’cetj <t < tj+m

in the limit for large u)o/n B and wo/n B Note that (42) does not hold

00
if & cycle slip occurs. However, the cycle slip still appears in (41) but
it wili be delayed because of the sample time by an amount small compared to
the cqfrelation time, Thus the validity of (41) is preserved for all S/N.
Sincegthe output of the non-linearity of Fige 3 is the same function as the
output of S and H of Fig.lk, these two diagrams describe systems that are
equivalent for all S/N, J

Now the discriminator and VCO, function are combined., Since the output

A

of the VCOA is

eyoo = A Lsin G (at + ;)] (43)

for & discriminator input of %E sin (wot + gi), they may be replaced by a
frequency divider with divisor, n, followed by a A function generator. This
can be physically implemented'by using a digital counter which counts the
input positive zero crossings up to a total of n, then resets itself to zero
and generates & sampling pulse that is narrow compared to the loop filter
correlation time., Then this cycle repeats itself egain continuously. Byrnel
used & divider along with & flip-flop phase detector to create a PLL with

& sawbtooth phase detector characteristic with period 2nmx.
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Since these transformations are valid for all S/N, the result, a
BPL followed by a PLL with modulo 2nx linear phase detector characteristic,
is equivalent to McRae's system as modified to have the sawbtooth non;
linearity. Therefore they have the same threshold and noise performance.
The author has experimentally'showné that a sample and hold circuit,
vwhen used with a sawtooth generating VCO in a PLL, for the case n = 1, does

have & characteristic that can be approximated by‘f(gi - 90) under the above

bandwidth conditions when -~10 db < S/N\< L0 db, (Referred to the loop bandwidth).
The comparison of the modified McRee system with the"lin-lock" ioop

without preceeding BPL does not appear to be‘tractable for the same reason

asbwas mentioned on pp. 9-10.

VIII. Tan~-lock Non=Linesarity Where g = 1

The "tan-lock" non;linearity will now be considered. The "tan-lock"
non-linearity was chosen because of the work done by Robinson7 and Uhran
where the use of this non-linearity as & phase detector characteristic
was investigated.

It is felt that it is only useful to treat the case of g = 1 since this
is the only case that is known to have been experimentally implemented.

The "tan-lock" non-linearity for constant S + N envelope, & such as

the BPL output is

a(l + k) sin(g; - 6)
£(f; - 6,) = T T o oos @, -6, (44 )

and k is the "tan-lock" coefficient which is such that 0 < k < 1. To
prevent delta functions due to the denominator going thru zero, it is useful
to have a, the input envelope, equal to 1, Fig. 5 is a modification of the

McRae system with "tan-lock” characteristic fo



A(t) sin (wot + gi)

/

BPL

——>

/

DISC

T
;fxsin(wot + ¢i)

Fig. 5. Modified McRee System With "Tan-lock'Non-linearity f.

The equation of the non-linear loop filter in Fig. 5 is

éo = h(t) * f (¢i - eo)

Consider the system in Fig. 6.

81p(wot+ﬁi)

gi gi-e f(gi-eo) )
"
1S 2= T 2 f
=0
)
/s 45—75— H(s) &
6
o
(45)

D(s)

VCO |

5%

D(8)

Fig., 6. Tan-lock Characteristic Generator

, ey -
3 -2 {j>——~“““eTAN
.

Here each D(S) is & low pass filter which has a bandwidth B_ such that

4

B, << BD < < Zwo

D

The output of the upper multiplier is

®
i1

|

sin (wdt + ﬁi) e2¢ COS (wdt + 90)

sin (9 - 6,) + sin (2wt + g +6.)

(46)

®7)
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and the output of the lower multiplier is

(¢4
]

2 sin (wot + ﬁi) sin (wot + 60)

i

cos (ﬁi - 60) - cos (ﬁi +6 +2 wot). |

It is assumed that the frequency roll off characteristic of D(S)
is sufficiently fast as well as equation (46) being satisfied so that
their response at the frequency Zwo can be neglecteds It is also assumed

that when used in a PLL with loop bandwidth B, the phase shift and roll off

L

of these filters can be neglected for frequencies up to B, if the outputs

2
of D(s) are sin(KZi - 60) and cos(ﬁi - 90) respectively., Then the output,
e.. , is £(#. - 6_), the "tan-lock" function. However, Fig. 6 is also

TAN i o]

recognized as the implementation of the "tan-lock" characteristic for a
PLL. Since the inputs to the "tan-lock" characteristic generator are

Lhg . . . . .

— sin (wot + Qi), and 6 and the output is f({Zfi - 90), it is mathe~
maticelly valid to replace the discriminator, the two integrators; the
adder and non-linear function, f, by the contents of Fig. 6 since it also
has the inputs %ﬁ sin (wot + ﬁi) for the case a = x/4, and 0, and output
f(gi -~ 60)0 .

Since the assumptions made in Fig. 5 and Fig. 6 are valid for 211 S/N,
the resulting system of BPL followed by PLL with "ten-lock" phase detector
is equivalent to McRae's system with "tan-lock" non-linearity post dis-
criminator filter for the case g = 1. Therefore both systems have the same
noise performance and the same threshold behaviour.

The comparison of the modified McRee system with the "tan-lock" loop

without preceding BPL does not appesr to be tractable for the same reason

as was mentioned on pp. 9-10.



IX, Conclusions

In summary it has been shown that 1) McRae's system with appropriate
non-linearity is methematically equivalent to the PLL when preceded by a
BPL for the following non-linearities:

a. Modulo 2w sine function phase detector charactefistic.

b. Modulo 2nx "lin=lock" phase detector characteristic.

¢. Modulo 2x "ten-lock" phase detector characteristic.

“and 2) that the noise threshold of McRae's system is the same as that of

a PLL preceded by BPL for the above set of non~linearities.
Still to be determined are the threshold of the "lin~lock" loop and

the effect of the BFL wpon a PLL.
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